物理学习的一些知识关系到我们的生活,学好物理知识不仅仅是为了提高分数了,也是为了增长我们的知识面。下面学大教育网为大家带来物理百科知识:非理想的第二类超导体,希望能够丰富大家的知识面。
非理想第二类超导体的磁化曲线,由于体内存在晶体缺陷而呈现不可逆的特性。当外磁场从零开始增大但小于Hc1时,超导体处于迈斯纳态。当H>Hc1时,磁场以磁通线的形式穿透体内。但缺陷的存在对磁通线的穿透造成阻力,因此超过Hc1时,磁化强度继续增大。当H>Hp时, 则随磁场的增大而它减小。直至Hc2时,磁化强度才等于零。当磁场从高于Hc2下降时,缺陷同样阻碍磁通排出,故磁化曲线上出现磁滞现象,以致零磁场时有剩余磁矩,称为俘获磁通。
晶阵缺陷的存在,阻碍着磁通线的运动。因此,可以把它们看作是一些对磁通线运动产生钉扎作用的钉扎体,也称为磁通钉扎中心。钉扎作用的强弱以钉扎力Fp的大小来表示。当温度高于绝对零度时,由于热激活的存在,磁通线总是有一定的几率从一个钉扎中心迁移到另一个钉扎中心,这种磁通线发生跳跃式的无规运动叫做磁通蠕动。
当传输电流在与外磁场相垂直的方向上通过处于混合态的超导体时,每根磁通线既受到钉扎力Fp的钉扎作用,又受到电磁力(洛伦兹力)FL=J)×Φo的驱动作用,其中J) 为电流密度,Φo为磁通量子。当FL>Fp时,磁通线会发生较快地横过导体的运动,这就是磁通流动。它会在导体纵向感生电压, 相应地“电阻”称为磁通流动电阻,其电阻率,式中ρn为超导体处于正常态时的电阻率,B为外磁场值。
在平衡状态下,超导体内各处的钉扎力与洛伦兹力相等,磁通线处于临界态。这时,超导体的体电流密度就是临界电流密度Jc。为描述临界态,已提出了比恩-伦敦(Bean-London)模型和金-安德森(Kim-Anderson)等模型。
非理想第二类超导体处于混合态时,在很高的横向磁场下,仍可以通过很大的体超导电流,其临界电流密度Jc有时高达10A/cm以上。 通过Jc-H特性和组织结构的关系,以及磁热不稳定性等的研究,现今已研制成功Nb-Ti、Nb-Zr合金和Nb3Sn,V3Ga化合物等稳定的实用超导材料(见超导元素及合金和化合物),成为发展强磁场超导磁体技术的基础。已经应用于固体物理、高能物理、受控聚变反应、磁流体发电等一系列现代科学技术部门而显示了巨大的优越性。
以上就是学大教育网为大家带来的物理百科知识:非理想的第二类超导体,希望这些知识能够对大家学习物理有所帮助,更多的物理百科内容请大家关注学大教育网。